Stock Market Forecasting Using Restricted Gene Expression Programming
نویسندگان
چکیده
منابع مشابه
Forecasting copper price using gene expression programming
Forecasting the prices of metals is important in many aspects of economics. Metal prices are also vital variables in financial models for revenue evaluation, which forms the basis of an effective payment regime using resource policymakers. According to the severe changes of the metal prices in the recent years, the classic estimation methods cannot correctly estimate the volatility. In order to...
متن کاملStock Market Forecasting Using Machine Learning Algorithms
Prediction of stock market is a long-time attractive topic to researchers from different fields. In particular, numerous studies have been conducted to predict the movement of stock market using machine learning algorithms such as support vector machine (SVM) and reinforcement learning. In this project, we propose a new prediction algorithm that exploits the temporal correlation among global st...
متن کاملStock Market Modeling Using Genetic Programming Ensembles
The use of intelligent systems for stock market predictions has been widely established. This chapter introduces two Genetic Programming (GP) techniques: Multi-Expression Programming (MEP) and Linear Genetic Programming (LGP) for the prediction of two stock indices. The performance is then compared with an artificial neural network trained using Levenberg-Marquardt algorithm and Takagi-Sugeno n...
متن کاملTaiwan Stock Investment with Gene Expression Programming
In this paper, we first find out some good trading strategies from the historical series and apply them in the future. The profitable strategies are trained out by the gene expression programming (GEP), which involves some well-known stock technical indicators as features. Our data set collects the 100 stocks with the top capital from the listed companies in the Taiwan stock market. Accordingly...
متن کاملForecasting Stock Market Trend using Prototype Generation Classifiers
Currently, stock price forecasting is carried out using either time series prediction methods or trend classifiers. The trend classifiers are designed to predict the behaviour of stock price’s movement. Recently, soft computing methods, like support vector machines, have shown promising results in the realization of this particular problem. In this paper, we apply several prototype generation c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Intelligence and Neuroscience
سال: 2019
ISSN: 1687-5265,1687-5273
DOI: 10.1155/2019/7198962